Current BLM Wild Horse and Burro Research Projects, December 2024

Institution; Project Name	Dates; Budget ¹	Goals and Status	Implications		
BLM-funded WHB research projects; FERTILITY CONTROL					
1. Northwest Wildlife	2023-2027;	Goals: Test SpayVac porcine zona pellucida [PZP] vaccine	PZP vaccines have		
Conservation, with Cornell	\$318,483	contraceptive effectiveness when injected in the neck or	been used for over a		
University; Improvements	FY2022	rump, compared to controls	decade, but a 1-shot		
to SpayVac vaccine		Status: Mares were vaccinated in June 2023, stallions were	PZP vaccine with long		
		introduced two months later. Foal rate monitoring started in	contraceptive effects		
		2024. Progesterone levels and foaling appears lower in	could be more useful.		
		treated mares than in untreated 'control' animals.			
2. USDA - APHIS -	2023-2026;	Goals: 1. Test the contraceptive effects of oocyte growth	Any humane, safe,		
National Wildlife Research	\$512,721 in	factor [OGF] vaccine formulations that cause high immune	effective vaccine that		
Center; Identification of a	FY2022, plus	responses.	causes long-term		
single-dose, long-lasting	\$170,803 in	Status: Vaccine formulation screening began in June 2023.	infertility, or sterility,		
adjuvant for Oocyte	FY2024	Testing for the two most immunogenic vaccine formulations	could reduce growth		
Growth Factor vaccine		began in 2024. Extra funding in FY2024 will allow for a	rates and save costs.		
		higher sample size and more frequent monitoring.			
 California Institute of Technology; Long-term 	2023-2025; \$547,700	<u>Goals</u> : Proof of concept study <i>in vitro</i> and in mice, that will develop and test a virally-vectored method to limit fertility.	Any humane, safe, effective vaccine that		
contraception through	FY2022	Status: Researchers have confirmed that synthesized	causes long-term		
inhibition of Juno, an egg		proteins bind to 'Juno' on oocyte surfaces <i>in vitro</i> , and will	infertility, or sterility,		
receptor required for		soon insert Juno-binding protein DNA into virus-like vectors,	could reduce growth		
fertilization		then test in laboratory mice.	rates and save costs.		

¹ Dates listed are for planned research and publication activity. Budgets listed here only reflect obligated BLM funding to researchers. Costs of WHB gathers, animal holding and care, agency administrative costs, and any researchers' in-kind contributions are not included here. BLM made six awards to proposals from the FY2024 request for proposals / notice of funding opportunity (L24AS00091); those awards are noted as 'FY2024.' Projects that were funded from the FY2022 funding opportunity are noted as 'FY2022.'

Institution; Project Name	Dates; Budget ¹	Goals and Status	Implications
4. Oregon State University;	2024-2026;	Goals: Proof of concept study in privately-owned mares, to	A humane, safe,
Uterine tube occlusion	\$73,157	test whether a minimally invasive procedure causes scarring	minimally invasive
after transcervical	FY2024	where the oviduct enters the uterus, to prevent fertilization.	sterilant could reduce
polidocanol foam infusion		Researchers will monitor for any post-procedure discomfort.	growth rates and save
in mares		Status: Project is to begin in FY2025.	costs.
	BLM-funde	d WHB research projects; FERTILITY CONTROL (cont.)	
5. Purdue University;	2024-2027;	Goals: Test whether a fertility control vaccine against the	Any humane, safe,
Development of a	\$494,092	Izumo sperm surface protein prevents fertility in privately-	effective vaccine that
contraceptive vaccine that	FY2024	owned mares. A water-soluble Izumo- and PZP-vaccines will	causes long-term
induces long-lasting		be prepared with the antigen bound to collagen	infertility, or sterility,
infertility in horses		nanoparticles designed for long-term immune response.	could reduce growth
		Status: Recombinant Izumo proteins have been prepared for	rates and save costs.
		use in a trial vaccine formulation.	
BLM-f	unded WHB resea	rch projects; INTERACTIONS WITH ENVIRONMENT AND CLIMA	TE
6. Utah State University	2022-2026;	Goals: Map 'usable space' for WHBs, then use remotely-	BLM needs to have
with USDA ARS; A protocol	\$226,242	sensed data and climate projections to evaluate WHB	predictions about what
for predicting habitat	FY2022	habitat conditions in the past and under future conditions.	climate change could
resilience to climate		Status: 10 years of WHB aerial survey data have been used	mean for WHB habitats
change on WHB habitats		to develop and test models of habitat suitability, as a	in the future.
		function of spatially and temporally variable environmental	
		factors. Preliminary results are in preparation for	
		publication.	
7. US Geological Survey;	2022-2026;	Goals: Create a public, west-wide geospatial database with a	This project will gauge
Livestock and wild horse	\$802,724	long-term time series of livestock grazing levels & wild horse	the separate
influences on vegetation	FY2022	herd sizes. Model current & future effects of livestock &	ecological effects of
and wildlife in sagebrush		WHB on vegetation, sagebrush-obligate birds, and other	wild horses and
ecosystems		ecosystem health indicators.	livestock.
		Status: Spatial database is in beta testing. USGS is	
		completing preliminary analyses on effects of environmental	
		covariates, including time series of wild horse density.	

Institution; Project Name	Dates; Budget ¹	Goals and Status	Implications
8. US Geological Survey;	2024-2026;	Goals: Create long-term time series of WHB densities at fine	Detailed maps of past
Mapping wild horse	\$240,081	scales (pixels, not polygons). WHB density is usually	density will improve
densities across broad	FY2024	measured at the scale of herd management area	scientific analyses of
landscapes of the Western		boundaries.	wild horse effects.
United States		Status: This is an addendum to project #7. Awarded in	
		FY2024; project began in FY2025	
BLM-fund	ed WHB research	projects; INTERACTIONS WITH ENVIRONMENT AND CLIMATE	(cont.)
9. US Geological Survey,	2024-2028;	Goals: Use GPS radio collar data from wild horses, mule	Ecological interactions
with Utah DWR and USU;	\$243,187	deer, pronghorn antelope, and domestic cattle and sheep to	across species can be
Spatial dynamics and	FY2024	assess habitat use overlap in western Utah.	measured in terms of
resource partitioning		Status: Wildlife and domestic species radio collaring is	what parts of shared
among feral, wild, and		funded by and ongoing via collaboration with Utah Division	habitats they use.
domestic ungulates in a		of Wildlife Resources [UDWR] and Utah State University	
western arid landscape		[USU]. Horse radio collaring was in early FY2025.	
BLM-funded WHB rese	arch projects; <mark>SU</mark>	RVEYS/DEMOGRAPHY/GENETICS/WELFARE/PLACEMENT/HU	MAN DIMENSIONS
10. US Geological Survey;	2016-2025;	Goals: Create and update "PopEquus" software to compare	BLM offices are using
Development of	\$459,859	costs and population outcomes that result from various	PopEquus to compare
population model and cost		removal and fertility control management actions.	management
analysis for managing wild		Status: Link to model: <u>https://rconnect.usgs.gov/popequus/</u>	alternatives.
horses		In FY25 USGS is beta-testing a new extension for wild	
		burros.	
11. Texas A&M University;	2020-2025;	<u>Goals:</u> Analyze genetic diversity based on hair samples from	BLM monitors genetic
BLM Wild Horse and Burro	Contract, up to	gathers, for ongoing BLM's WHB population monitoring.	diversity and risks of
genetic monitoring	\$182,625	Status: Microsatellite DNA genotyping has informed BLM's	inbreeding depression.
		herd management for over 2 decades; reporting is ongoing.	
12. US Geological Survey;	2024-2026;	Goals: Compare the utility of single nucleotide	Modern methods may
Testing and optimizing	\$89,883	polymorphisms (SNPs) for genetic monitoring, as opposed	provide more detailed
new genomic markers for	FY2024	to the currently used genetic markers (microsatellites)	information at lower
wild horses		Status: Awarded in FY2024; project to begin in FY2025.	cost.

Institution; Project Name	Dates; Budget ¹	Goals and Status	Implications			
BLM-approved WHB research projects <i>funded entirely by other sources</i>						
Aarhus University (Denmark) with Texas A&M Inbreeding status and climate change adaptability of feral horse populations	2024-2027; \$0 BLM	<u>Goals:</u> Use whole-genome genotyping across multiple wild horse populations to assess genetic diversity, relatedness, and potential evolutionary adaptation to local environments. <u>Status:</u> Genetic samples from 25 herds identified have been genotyped at Texas A&M University.	Whole-genome genetic methods may provide more detail about these questions than microsatellite DNA.			
Utah State University; Mountain lion prey selection in SE Nevada	2021-2025; \$0 BLM	<u>Goals:</u> Assess levels of horse and other ungulate prey in mountain lion diets, before and after a wild horse gather. <u>Status:</u> Initial studies published in peer-reviewed journal. Predation on horses is mainly in foals and yearlings, but different lions specialize to different extents.	Predation is mainly on foals, but seems to not prevent herds from growing overall.			

Recent research and related publications related to wild horses and burros Mostly Western USA-centric; since approximately December 2023

The ^{\$BLM\$} symbol before a citation indicates BLM-funded and / or BLM-supported work. Some non-BLM-supported publications are listed here because they may relate to wild horse and burro management. For lists of papers from 2021 to 2023, see the <u>September</u> <u>2022</u> and <u>December 2023</u> summaries to the advisory board. Topics are ordered based on listings in the 2021 BLM WHB strategic research plan.

Fertility Control

^{\$BLM\$} Bruemmer, J.E., Eckery, D.C., Eisenfelder, M. and Mundell, C. 2023. 138 Immunization against oocyte growth factors in feral mares. Journal of Equine Veterinary Science 124:104440. (*Meeting abstract only*) <u>https://doi.org/10.1016/j.jevs.2023.104440</u>

Schulman, M.L., Hayes, N.K., Wilson, T.A. and Grewar, J.D. 2024. Immunocontraceptive efficacy of native porcine zona pellucida (pZP) treatment of Nevada's Virginia Range free-roaming horse population. Vaccines 12(1):96. <u>https://www.mdpi.com/2076-393X/12/1/96</u>

Rutberg, A.T., Turner Jr, J.W. and Herman, K. 2022. Fertility control and the welfare of freeroaming horses and burros on US public lands: the need for an ethical framing. Animals 12(19):2656. <u>https://doi.org/10.3390/ani12192656</u> (*by mistake this 2022 article was not included in previous lists to the advisory board*)

Asa, C.S., Griffin, S.L.B., Eckery, D., Hinds, L.A. and Massei, G. 2024. Foreword to the special issue on 'fertility control for wildlife in the 21st century.' Wildlife Research 51(1). https://www.publish.csiro.au/WR/pdf/WR23142

Ecology, Environmental Interactions, and Climate

^{\$BLM\$} Hennig, J.D., Beck, J.L. and Scasta, J.D. 2024. Feral horses and pronghorn: a test of the forage maturation hypothesis in an arid shrubland. Animal Behaviour 210:55-61. https://doi.org/10.1016/j.anbehav.2024.01.01

^{\$BLM\$} Esmaeili, S., Schoenecker, K.A. and King, S.R. 2024. Resource availability and heterogeneity affect space use and resource selection of a feral ungulate. Ecosphere 15(8):e4939.

https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1002/ecs2.4939

^{SBLMS} Teige, E.C., Maxwell, L.M., Jordan, S.E., Rutherford, T.K., Dietrich, E.I., Samuel, E.M., Stoneburner, A.L., Kleist, N.J., Meineke, J.K., Selby, L.B. and Foster, A.C. 2023. Annotated bibliography of scientific research on greater sage-grouse published from October 2019 to July 2022. US Geological Survey Open File Report 2023-1082. https://pubs.usgs.gov/publication/ofr20231082/full

^{\$BLM\$} Davies, K. 2024. How variation in activity time and duration at water sources affects feral horse vulnerability to cougar predation in southern Nevada. Utah State University Undergraduate Honors Capstone Projects 989. <u>https://digitalcommons.usu.edu/honors/989</u>

^{\$BLM\$} Iacono, P.C., Schoenecker, K.A., Manlove, K.R., Jackson, P.J. and Stoner, D.C. 2024. Evaluating mountain lion diet before and after a removal of feral horses in a semiarid environment. Ecosphere 15(7):e4919.

https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/ecs2.4919

^{\$BLM\$} Beck, J.L., M.C. Milligan, K.T. Smith, P.A. Street, A.C. Pratt, C.P. Kirol, C.P. Wanner, J.D. Hennig, J.B. Dinkins, J.D. Scasta, and P.S. Coates. 2024. Free-roaming horses exceeding appropriate management levels affect multiple vital rates in greater sage-grouse. Journal of Wildlife Management (2024):e22669.

https://wildlife.onlinelibrary.wiley.com/doi/full/10.1002/jwmg.22669

^{\$BLM\$} Behnke, T.L., Street, P.A. and Sedinger, J.S. 2023. Climate and non-native herbivores influence reproductive investment by Greater Sage-grouse. Ecosphere 14(5):e4498. <u>https://doi.org/10.1002/ecs2.4498</u>

Platte, R.C. and Torland, R.E. 2024. Influence of wildfire and feral horse use on mule deer summer range occupancy. Wildlife Research 51(1). <u>Internet link</u>

Rubin, E.S., Conrad, D., Harding, L.E. and Russo, B.M. 2024. Associations between a feral equid and the Sonoran Desert ecosystem. Wildlife Monographs 215(1):e1083.<u>https://doi.org/10.1002/wmon.1083</u>

Lundgren, E.J., Bergman, J., Trepel, J., Le Roux, E., Monsarrat, S., Kristensen, J.A., Pedersen, R.Ø., Pereyra, P., Tietje, M. and Svenning, J.C. 2024. Functional traits—not nativeness—shape the effects of large mammalian herbivores on plant communities. Science 383(6682):531-537. https://doi.org/10.1126/science.adh2616

Rowland, P.I. and Lovelock, C.E. 2024. Global impacts of introduced ungulates on wetland carbon and biodiversity: A review. Biological Conservation 290:110432. https://www.sciencedirect.com/science/article/pii/S0006320723005335

Trepel, J., le Roux, E., Abraham, A.J., Buitenwerf, R., Kamp, J., Kristensen, J.A., Tietje, M., Lundgren, E.J. and Svenning, J.C. 2024. Meta-analysis shows that wild large herbivores shape ecosystem properties and promote spatial heterogeneity. Nature Ecology & Evolution 8(4):705-716. <u>https://www.nature.com/articles/s41559-024-02327-6</u>

O'Donnell, R.P., Fox, J. and Ingraldi, M.F. 2023. Environmental DNA in the management of invasive and native amphibians: American bullfrogs and barred tiger salamanders on the Grand Canyon-Parashant National Monument. Sonoran Herpetologist 36:28-30. Link via ResearchGate

Dilsaver, L.M., 2023. Obstacles to removing non-native species from a national park. In Parks Stewardship Forum (Vol. 39, No. 1). <u>https://escholarship.org/uc/item/3tc8n7zn</u>

Rambaldi Migliore, N., Bigi, D., Milanesi, M., Zambonelli, P., Negrini, R., Morabito, S., Verini-Supplizi, A., Liotta, L., Chegdani, F., Agha, S. and Salim, B. 2024. Mitochondrial DNA controlregion and coding-region data highlight geographically structured diversity and postdomestication population dynamics in worldwide donkeys. PLoS One 19(8):e0307511. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0307511 Molvar, Erik M., Roger Rosentreter, Don Mansfield, and Greta M. Anderson. 2024. Cheatgrass invasions: History, causes, consequences, and solutions. Report by Western Watersheds Project. <u>https://westernwatersheds.org/wp-content/uploads/2024/02/Cheatgrass-Literature-Review-final.pdf</u>

Berman, D.M., Pickering, J., Smith, D. and Allen, B.L. 2023. Use of density-impact functions to inform and improve the environmental outcomes of feral horse management. Wildlife Biology 2023(5):e01107. <u>https://doi.org/10.1002/wlb3.01107</u> (from Australia)

WHB In General, and Human Dimensions

Frey, N., Beck, J.L., Singletary, L., Snell, L., Scasta, D. and Hadfield, J. 2024. Western US residents' knowledge of wild free-roaming horses and their management on federal public lands. Rangeland Ecology & Management 92:12-23. <u>Link via bioone.org</u>

Taylor, W.T.T., Belardi, J.B., Barberena, R., Coltrain, J.B., Marina, F.C., Borrero, L.A., Conver, J.L., Hodgins, G., Admiraal, M., Craig, O.E. and Lucquin, A. 2023. Interdisciplinary evidence for early domestic horse exploitation in southern Patagonia. Science Advances 9(49):eadk5201. https://www.science.org/doi/pdf/10.1126/sciadv.adk5201

Moore, C.R., Kimball, L.R., Goodyear, A.C., Brooks, M.J., Daniel Jr, I.R., West, A., Taylor, S.G., Weber, K.J., Fagan, J.L. and Walker, C.M. 2023. Paleoamerican exploitation of extinct megafauna revealed through immunological blood residue and microwear analysis, North and South Carolina, USA. Scientific Reports 13(1):9464.

https://www.nature.com/articles/s41598-023-36617-z

Britton, J.L., Del Grosso, A., Ellis, C. and Hunold, C. 2023. Wild horse roundups and removals: affect, gender, interspecies politics. Humanimalia 14(1):207-248. https://humanimalia.org/article/view/14311/18502

Smith, Z. 2024. Creation of eco-terrorism: a history of actions by the Earth First!, Earth Liberation and Animal Liberation Front from the 1980s-2000s. History Thesis, State University of New York Buffalo State University. *(addresses the 11/30/1997 arson crime at the BLM Burns corral)*

https://digitalcommons.buffalostate.edu/cgi/viewcontent.cgi?article=1062&context=history_t heses

Fitzgerald, T. 2024. Wild horses and burros in economic perspective. Rangeland Ecology and Management 98:530-538. www.sciencedirect.com/science/article/pii/S1550742424001866

Health and Welfare

^{\$BLM\$} Schoenecker, K.A., King, S.R., Hennig, J.D., Cole, M.J., Scasta, J.D. and Beck, J.L. 2024. Effects of telemetry collars on two free-roaming feral equid species. PLoS One 19(5):e0303312. <u>https://doi.org/10.1371/journal.pone.0303312</u>

Stothart, M.R., McLoughlin, P.D., Medill, S.A., Greuel, R.J., Wilson, A.J. and Poissant, J. 2024. Methanogenic patterns in the gut microbiome are associated with survival in a population of feral horses. Nature Communications 15(1):6012. <u>https://www.nature.com/articles/s41467-024-49963-x</u> (*Canadian island horses*)

Private Care Placement

Stowe, C.J. and White, H. 2024. Characteristics of potential adopters of wild horses and their willingness-to-pay for wild horses. Journal of Applied Animal Welfare Science 2024:1-13. https://doi.org/10.1080/10888705.2024.2317278

Scasta, J.D., Stewart, W., Hutchinson, E., Koepke, K., Lima, P.D.M.T., Laverell, D.M., Kersh, A. and Stam, B. 2024. From wild to watchful: integrating BLM donkeys (burros) for sheep ranch protection. Sheep and Goat Research Journal 39 (July):12-19.

Dalke, K. and Hunt, M.O. 2017. Mustangs and domestic horses: examining what we think we know about differences. Humanimalia, 8(2):46-62. https://humanimalia.org/article/download/9630/10156 (about post-adoption)

Watkins, T., and K. Flavin. 2024. From range to ranch; assessing the Bureau of Land Management's wild horse and burro adoption and incentive program. Report by the Property and Environment Research Center. <u>http://perc.org/adoptions</u>

<u>Genetics</u>

^{\$BLM\$} Cothran, E.G., Khanshour, A., Funk, S.M., Conant, E., Juras, R. and Davis, B.W. 2024. Genetic dynamics of mustang and feral horse populations in the western United States. *BioRXiv* 2024:1. (*preprint*) doi: <u>https://doi.org/10.1101/2024.01.28.577652</u>

Colpitts, J., McLoughlin, P.D. and Poissant, J. 2024. Inbreeding depression in Sable Island feral horses is mediated by intrinsic and extrinsic variables. Conservation Genetics 25(1):1-15. https://doi.org/10.1007/s10592-023-01549-8

Todd, E.T., Tonasso-Calvière, L., Chauvey, L., Schiavinato, S., Fages, A., Seguin-Orlando, A., Clavel, P., Khan, N., Pérez Pardal, L., Patterson Rosa, L. and Librado, P. 2022. The genomic history and global expansion of domestic donkeys. Science 377(6611):1172-1180. https://www.science.org/doi/full/10.1126/science.abo3503