

BLM Wild Horse and Burro Research Background Materials for Advisory Board, June 2021

These materials for the June 2021 WHB Advisory Board meeting include notes about BLM-supported WHB research and a summary of BLM-supported and other research since 2005.

WHB Research and the BLM

The Department of the Interior (DOI) is guided by science in natural resource management.¹ The Bureau of Land Management (BLM) must maintain a thriving natural ecological balance on the Public Lands it stewards, protecting highly valued wild horse and burro (WHB) populations along with other resources, uses, and values on the public lands system. Wild horses and burros contribute unique value to public lands of the American West. Many WHB herds that are larger than appropriate management levels (AML) grow at rates of ~20% per year and are currently damaging ecologically sensitive habitats in and near herd management areas (HMAs). Large numbers of excess animals, relative to available natural resources, are causing lasting negative effects on riparian lands and uplands, wildlife habitat quality, and soil erosion, and are degrading landscapes' potential resilience in the face of climatic change.

High-quality research can inform management decisions and save taxpayer dollars over time. To the extent possible, the BLM applies the results of scientific research to improve WHB management, to help the BLM protect self-sustaining wild horse and burro populations, and to meet the ecological goals behind its mission.

The BLM has supported WHB-related research since shortly after passage of the WFRHBA. The largest recent pulse of BLM-funded WHB research was in fiscal year (FY) 2015, supporting multiple studies to develop and test fertility control methods, including studies of silicone IUDs, new fertility control vaccines, and how GonaCon vaccine boosters increase long-term effectiveness. The BLM has supported these and other fertility control studies since FY2015, and has initiated other new research projects since that time. Some studies addressing demography, behavior, genetics, and other topics were also funded in and since FY 2015 (see table of research projects, below).

Peer-reviewed research can provide transparent scientific results that inform management and have the potential to improve public trust in the BLM's decisions. The US Geological Survey (USGS), US Department of Agriculture Animal and Plant Health Inspection Service (USDA APHIS), USDA National Wildlife Research Center (NWRC), National Park Service (NPS), US Forest Service, research universities, and non-governmental organizations have been important partners in formulating and carrying out WHB research. The USGS is the research agency for the Department of the Interior and

¹ Presidential Order 13990. Executive Order on Protecting Public Health and the Environment and Restoring Science to Tackle the Climate Crisis. January 20, 2021.

has contributed much to WHB research studies since 2001. The BLM relies on USDA APHIS Veterinary Services, whose mission includes ensuring the humane care and treatment of animals, for advice on WHB welfare, veterinary care, and potential study design. The BLM also collaborates with other agencies and organizations to support studies that address climate adaptation and resilience, wildlife, land use, fire, and ecosystem restoration.

The BLM WHB Research Advisory Team Structure

For WHB-related studies involving any level of BLM support or permitting, or which might include or affect living WHB or use of their tissues, all research proposals and inquiries must be sent to the WHB Program's Research Advisory Team (BLM IM 2005-204). The team plays a role in ensuring that any BLM-supported, WHB-related research meets high standards of scientific quality, including with respect to animal welfare, study design and inference strength. The team reviews proposals, soliciting outside peer reviews as needed, and makes recommendations to the WHB Program Division Chief, who then approves or denies these proposals. The team monitors ongoing studies to track progress toward study objectives, encourage responsible spending, and advises the WHB Program on current research results. The team is co-chaired by the WHB program On-Range Branch Chief and the WHB Research Coordinator; other members currently include two WHB specialists, the USDA APHIS Veterinary Services advisor, and liaisons from the US Forest Service and National WHB Advisory Board. Research Advisory Team members cannot review proposals in which they have a real or perceived conflict of interest.

2005 WHB Research Strategy and 2013 National Academies of Sciences Report

The choice of research projects that the BLM has supported since 2005 have been heavily influenced by the 2005 strategic research plan², and by a BLM-commissioned, 2013 National Academies of Sciences (NAS) report³. The 2005 WHB research strategy set research goals for four topics: 1) health and handling, 2) fertility control, 3) population estimation and modeling, and 4) genetics. The 2005 strategy suggested studies to address what were key questions at that time, in each of the four listed research topics.

At the BLM's request, the NAS reviewed several aspects of the WHB program, including population growth, fertility control, inventory methods, the setting of AML, and population genetics. The 2013 NAS report recommended that the BLM use science-based tools to address program challenges including overpopulation relative to AML, and high annual growth rates. The 2013 report identified areas where the results of research could improve WHB management decisions.

Research Responsive to the 2005 WHB Research Strategy and 2013 NAS Report

The BLM has funded and collaborated on many WHB research projects addressing the priorities identified in the 2005 WHB research strategy and the 2013 NAS report. The tables below summarize known WHB research projects in the US since 2005; please contact Paul Griffin if you are aware of additional projects that should be added to this list, or updates that should be made. The BLM

² Bureau of Land Management Wild Horse and Burro Program. 2005. Strategic research plan; Wild Horse and Burro Management. Bureau of Land Management, in collaboration with US Geological Survey and USDA Animal and Plant Health Inspection Service. Fort Collins, Colorado.

³ National Research Council of the National Academies of Sciences (NAS). 2013. Using science to improve the BLM wild horse and burro program: a way forward. National Academies Press. Washington, DC.

leveraged appropriated WHB Program funds to support research with practical management applications, collaborating with universities, non-governmental institutions, and state and federal agencies, some of which secured support from other funding sources.

The BLM obligated approximately \$11M of research funding in FY 2015 to support projects related to fertility control, aerial surveys, ecology, demography, and genetics. These were led by leading equine science research universities, USGS, NPS, and USDA NWRC. Fertility control research proposals were in response to a 2014 BLM request for proposals (RFP), and were reviewed by the National Academies of Sciences. The studies funded in FY 2015 constitute the majority of BLM-funded WHB research in the last 10 years. Since FY 2015, a smaller number of additional, compelling research projects have been funded as WHB Program funding has allowed.

In the future, additional RFPs would be the preferred mechanism to alert the research community about any available funding. RFPs tend to foster the greatest level of competition and public transparency. If future budgets allow for it, a consistent and organized source of funding over time could keep the research community engaged, and lead to the development and testing of many more potential fertility control methods, and other advances in WHB management.

The BLM is eager to work with partners that share an interest in improving WHB management through scientific investigation, and then applying the results of research through agency actions. In the recent past, NPS, US Fish and Wildlife Service, USDA NWRC, USFS, Department of Defense, Arizona Game and Fish Department, Wyoming Department of Transportation, and Humane Society of the United States have also supported WHB research.

The BLM looks forward to seeing the results of projects that it supports as publications in peerreviewed scientific literature, and drawing on those results in its management decisions.

The following materials include:

- 1. 1-page chart of BLM-supported projects, with research projects color-coded by topic;
- 2. 2-page description of some notable projects that were responsive to the four priority research topics identified in the 2005 WHB strategic research plan;
- 3. 16-page "Table of Past and Present Wild Horse and Burro Research and Related Projects," describing projects known to BLM since 2005, listed in terms of collaborator, budget, goals, outcomes, and management implications; and
- 4. 6-page listing of scientific literature cited in the description and table.

Overview of Wild Horse and Burro Research & Pilot Projects Since 2005

Project numbers in the timeline refer to BLM-supported projects in the summary table that follows.

Project #	gency / niversity	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022		
1 Occyte vaccine pen trial																				Legend	
2 Geldings field trial	2020																			Fertility	
3 Silicone II IDs pen trial																				Modeling	
4 PonFauus software													\searrow	\searrow	\searrow	\searrow	\checkmark	\checkmark	\checkmark	Genetics	
5. Oocyte vaccine development	Colo State												\sim		\sim	\bigtriangleup	\bigtriangleup	\bigtriangleup	\frown	Safety	
6. GonaCon booster field trial	Colo State																			Welfare	
7 Burro PZP darting field trial	HSUS																			Fcology	/
8 PZP Capsules development	Ohio State																			Surveys	
9 PZP Adjuvant development	Purdue U																			Pollina	
10 GonaCon pilot project	BI M																			Human Dimensions	\$
11 Genetic monitoring																					-
12 Minimally invasive sterilization ⁴	UC Davis																				
13 PZP pellet vaccine trial	U Toledo																				
14 PZP-22 development	U Toledo																				
15 PZP-22 field trials	U Toledo																				
16 Spay Vac pen trials	USGS																				
17 Ecology, demography & behavior	USGS																				
18 Sage-grouse stressors	USGS												/	/				/			
19 Horses and Sage-grouse	USGS												/	/							
20 Horse demography	USGS												/	/							
21 Burro demography	USGS													/							
22 Movements in checkerboard	U Wyo																				
23 Burro-vehicle collisions	AZGFD																				
24 Infrared survey tests	USGS																				
25 Burro survey methods	USGS																				
26 Fecal DNA methods	USGS																				
27 Horse survey methods	USGS																				
28 Surveys; distance sampling	WEST																				
29 Satellite-based counts	BLM																				
30 Riparian impacts	U Idaho																				
31 Carrying capacity	USGS														1						
32 Adoption marketing	Contractor																				
33 Radio collar testing	USGS																				
34 Shade study	UC Davis																				
35 WHB thermal environment	APHIS																				
36 Tubal ligation	U Ky.																				
37 Contraceptive peptides	lsu																				
38 Spay outcomes ⁵	USGS																				
39 Public survey ⁵	lpsos PA																				
40 Spay testing ⁵	Oregon SU																				
41 Minimally invasive sterilization ⁵	Oregon SU																				

⁴ Captive trial funded by State of California. The project seeks to use BLM wild horses in a future field trial.
 ⁵ These studies were never started, for litigation, logistical, or administrative reasons.

The following text highlights some projects that addressed the four major research topics identified in the 2005 WHB research strategy.

Health and Handling

The 2005 strategy suggested that the BLM should study actions that would maintain, protect and improve the health and well-being of wild horses and burros held in captivity. BLM supported a UC Davis study that examined wild horse tolerance for heat and use of shade structures at the BLM Palomino Valley Wild Horse Corrals. Under the observed conditions, the researchers found that horses made use of available shade, but that it was not required to protect their health (Holcomb and Stull 2016, Holcomb 2017). Based on this information, the BLM updated its shade and shelter requirements for WHB placed into private care, with protections that vary according to local weather patterns and legal requirements.

Fertility Control

The 2005 strategy identified the BLM's priority need for long-lasting contraceptive methods, preferably those that require only one handling event. The NAS identified three 'most promising' treatments, at the time of their 2013 report, as being PZP vaccines (ZonaStat-H, PZP-22, SpayVac), chemical vasectomy and the GonaCon vaccine, and encouraged the BLM to support development and testing of other methods as well. Testing new or improved long-lasting fertility control methods can require several years of research to determine safety and long-term effectiveness. A benefit of simultaneously funding research into many potential fertility control methods in 2015 was that promising methods were identified (e.g., Y-shaped silicone IUDs, GonaCon vaccine booster, oocyte growth factor vaccine) while studies of methods that failed (e.g., O-ring silicone IUDs, and a form of tubal ligation), and associated expenses, were stopped early.

BLM-funded studies monitored effects of PZP vaccines, particularly of pelleted PZP vaccine formulations such as PZP-22. In an initial field trial at Clan Alpine HMA, PZP-22 doses reliably conferred 2 years of contraception (Turner et al. 2007). However, the 'Annenburg study' at Cedar Mountains HMA and Sand Wash Basin HMA revealed that PZP-22 did not reliably produce 2 years of contraceptive effect, though it can lead to moderately high efficacy for 3 years after a subsequent PZP vaccine booster (Rutberg et al. 2017). Based on these results, the BLM now uses PZP-22 in mares in cases where PZP vaccine is to be used but where it is advantageous to not have to hold the mares in captivity for 30 days to receive a booster shot. A booster shot would be needed after just 30 days, for first-time use of ZonaStat-H. Since 2013, reports to BLM from University of Toledo and USGS research showed that neither PZP-22 pellets (Turner 2017) nor SpayVac as formulated at the time (Roelle 2015) caused reliable long-term contraception from one dose.

The BLM has focused on female contraception, because reducing female fertility most directly affects herd growth rates. In work on the Sheldon National Wildlife Refuge, funded by the US Fish and Wildlife Service, Collins and Kasbohm (2016) showed that mare sterilization did not prevent treated mares from consorting with other horses, did not reduce treated mares' on-range survival rates, and did reduce population growth rates in proportion to the fraction of mares treated. Scully et al. (2015) showed that chemical vasectomy was not effective at sterilizing stallions.

NAS (2013) suggested further research into behavioral and contraceptive effects of GonaCon vaccine. Such studies have since taken place in NPS- and BLM-funded studies at Theodore

Roosevelt National Park (Baker et al. 2013, Ransom et al. 2014, Baker et al. 2018). There were minimal behavioral effects, and a booster dose of GonaCon caused highly effective fertility control in mares (91% average effectiveness over 4+ years for animals treated with two hand-injected doses; Baker et al. report to BLM). Although the BLM will continue to use PZP vaccine, especially where darting of the PZP vaccine ZonaStat-H occurs and has shown to be successful, the BLM has been increasing its use of GonaCon.

Population Estimation and Modeling

Before 2013, most of the BLM's aerial surveys used 'raw count' methods that did not allow for a statistical estimation of how many animals were present in the survey area, but not seen. The 2005 strategy and the 2013 NAS reports acknowledged that 'raw count' surveys were likely underestimating the actual numbers of WHB on range. The BLM subsequently partnered with USGS to develop and test several aerial survey methods. Two have been validated in multiple areas: simultaneous double-observer (Lubow and Ransom 2016), and photo mark-resight (Lubow and Ransom 2009). The simultaneous double-observer method has become the standard method for wild horse and burro aerial survey data collection (Griffin et al. 2020) and analysis (Ekernas 2019). Infrared aerial surveys have also been validated in at least one area with limited vegetation (Schoenecker et al. 2018).

The 2005 strategy called for an update to the 1996 WinEquus horse population projection model, and USGS is currently developing a user-friendly population and cost projection model, "PopEquus."

Genetics

The BLM has a long-term commitment to genetic monitoring, and has sent over 200 sets of samples from monitored herds for laboratory analysis. Results regularly inform the BLM's management decisions at local levels. The 2005 strategy noted the importance of determining the genetic population structure of WHB across the west, including identifying genetically connected subpopulations ("metapopulations"). The small size of some subpopulations may not be a grave concern with respect to genetic diversity, because they are generally part of a larger connected metapopulation in which historic and present gene flow maintains genetic diversity. Patterns in microsatellite DNA allelic diversity were the basis for an analysis of WHB genetic diversity in the NAS report (2013), which found only three herds with notably high Spanish influence (in Pryor Mountains, Sulphur, and Cerbat HMAs). The same report showed that most BLM-managed wild horse herds are highly related, in terms of Fst values, which are a measure of subpopulations' differentiation. Most recently, an analysis of wild horse genetic samples confirms that most herds are part of a single, large, genetically-connected metapopulation (Cothran et al., Texas A&M University, in review).

Table of Past and Present Wild Horse and Burro Research and Related Projects

Research Entity;	Dates ⁶ ;								
Project Name	Budget	Description and Status	Management Applications						
	BLM-funded or facilitated WHB research and related projects								
1. USDA - APHIS - National Wildlife Research Center; Evaluation of a vaccine against ovarian growth factors as a single dose, long-lasting immunocontraceptive	2019-2022; \$238,281	<u>Goal:</u> Pen trial building on project #5, test whether a one-dose version of the vaccine against BMP-15 and GDF-9 causes long-term infertility. <u>Status: Ongoing</u> . BLM's final Environmental Assessment (March 2020) describes the ongoing study at Northern Nevada Correctional Center. 16 mares were injected with vaccines and 16 with placebos, in May 2020. In theory, the mare may deplete her ovaries of fertile oocytes, thus becoming sterile. Stallions were introduced to mare groups in August 2020. Antibody levels and foaling rates are currently being recorded for treated and untreated mares.	If successful, this one-shot vaccine would permanently sterilize mares, and no further treatments for the life of those animals would be needed.						
2. USGS; Evaluating behavior and ecology of geldings among a breeding population	2015–2020; \$826,099 ⁷	<u>Goal:</u> Use a field trial to determine the behavioral and demographic effects of having a portion of a herd be gelded male (neutered) wild horses. <u>Status: Data collection complete.</u> Gather took place at Conger HMA in fall 2016. 30 mares were fitted with radio collars. 29 studs were fitted with radio tags, but 13 of 14 GPS tail tags had firmware issues and were re-deployed in spring 2017. Further collars and tags were deployed after the treatment gather. Aerial surveys were conducted every spring 2017-2020. As part of a gather in which family groups and bachelor stallions were captured together, held, and released together, 27 studs were gelded in a facility in December 2017. All horses were returned to the range shortly thereafter, including treated and non-treated bachelor stallions. 2018-2020 were the three post-treatment years of the study. Gelded stallions maintained harems in 2018 similar to ungelded, and displayed similar reproductive behaviors as intact stallions. The foaling rate post-treatment appears lower for only one year, compared to pre-treatment.	Field offices may be more confident about using gelding because of this study. Geldings can temporarily reduce herd growth rates if they take the place of mares, or if they continue to defend harems.						

⁶ Dates listed are for planned data collection and publications. Unless otherwise noted, the budget listed includes obligated BLM funding.

⁷ Costs of aerial surveys are not included in USGS project budgets. Those aerial surveys will be led and paid for directly by BLM.

Research Entity;	Dates ⁶ ;		
Project Name	Budget	Description and Status	Management Applications
		BLM-funded or facilitated WHB research and related projects	
3. USGS; Evaluating the efficacy and safety of Silicone intrauterine devices as a horse contraceptive	2016–2020; \$750,826	<u>Goal:</u> Pen trial of the efficacy and effects on mare health resulting from the long-term presence of a silicone intrauterine device (IUD). <u>Status: Complete.</u> From 2017 to 2019, 75% or more of flexible, 'Y' shaped silicone IUDs stayed in mares that got an injection of progesterone at the time of IUD insertion. After removal in March 2019, most mares (12 of 19) returned to fertility the first season after removal of IUDs and IUDs provided 100% contraception while in place. IUDs did not significantly change the endometrial biopsy scores on any mares (no significant harm to their uterus as revealed by biopsy scores; Holyoak et al. 2021 in press). The IUD tested in this study is now made by an EPA-registered manufacturer, and is available for BLM's use.	This study has given BLM another low-cost, long- lasting fertility control tool. IUDs can go into open (non- pregnant) mares that would be released to the range, reducing holding costs and future foal births.
4. USGS; Development of a population model and cost analysis for managing wild horses (also known as "PopEquus")	2016-2022; \$459,859	<u>Goal:</u> Update the existing WinEquus model used by managers for wild horse population projections. The new software will compare population outcomes and economic costs resulting from PZP, removals, mare sterilization, gelding and other population growth suppression tools. <u>Status: Model in preparation</u> . BLM staff tested simple model in late February 2019. Preliminary model results were shown in conferences and meetings in 2018 and 2019. USGS aims to beta test in spring 2021.	When fully implemented, the model can assist managers in comparing costs of gathers and different kinds of fertility control.
5. Colorado State University; Effect of Immunization against Oocyte Specific Growth Factors in Mares	2015–2020; \$1,110,065	<u>Goal:</u> Initial vaccine development to test whether vaccines against two ovarian proteins (BMP-15 and GDF-9) in domestic mares cause infertility. Long-term goal is to develop a vaccine that can cause permanent sterility from one dose. <u>Status: Data collection complete.</u> In 2017, a 4-dose vaccination against each protein individually led to irregular follicle development, and one of the vaccines reduced ovulations. Ten mares had 4 doses of a combined vaccine with both proteins. None of those mares ovulated in 2018, (only one in 2019); follicles developed only to a very early and small stage; progesterone levels remained low (Davis et al. 2018). These promising results led to study #1 (above, in this table).	This study showed that this new type of fertility control vaccine could, in theory, sterilize mares. The four- shot version of the vaccine worked well, but now is being tested as a one-shot vaccine, in project #1.

Research Entity;	Dates ⁶ ;							
Project Name	Budget	Description and Status	Management Applications					
	BLM-funded or facilitated WHB research and related projects							
6. Colorado State	2015-2020;	Goal: Field trial at Theodore Roosevelt NP to determine the optimum	Using this vaccine					
University;	\$287,884	booster schedule; duration of effectiveness; and safety and physiological	repeatedly would slow					
Re-immunization of	(and with in-	side-effects (if any) following booster vaccination with GonaCon.	annual population growth					
Free-Ranging Horses	kind support	Status: Data collection complete. A single GonaCon booster dose causes 4	rates and could allow for					
with GonaCon	from	or more years of infertility, when injected by hand. Field crews observed	longer times between					
Vaccine	National	foaling rates in 2016-2019, and will continue in 2020. Untreated mares	gathers. BLM is now					
	Park	foaled at high rates of 75-100%. The foaling rate for mares re-treated with	including GonaCon in many					
	Service)	GonaCon 4 years after initial dose were 0%, 16%, 4%, 8%, 8%, and 21% in	NEPA analyses and has					
		2015-2020. For mares boostered by dart 2 years, 1 year, or 6 months after	begun to use it more in					
		their primer dose, the 2018-2020 foaling rates were 18%, 34%, and 37%. The	management. SOPs for					
		researchers published early results (Baker et al. 2018), and are preparing	GonaCon use are available.					
		article(s) on dart-based delivery and efficacy results.						
7. Humane Society of	2016-2021;	Goal: Field trial to test whether ZonaStat-H (a PZP vaccine) can be	This information could be					
the United States;	\$64,975	effectively darted to wild burros in the vicinity of Oatman, Arizona.	included in NEPA analyses					
Applicability and	(Humane	Status: Ongoing. Trapping, marking, and initial treatments for 108 jennies	when local offices are					
efficacy of ZonaStat-	Society of	are completed. HSUS continues to deliver booster doses via dart to those	weighing the costs and					
H on wild burros in	the USA	jennies that only received a primer dose (with good success to date), and to	benefits of dart-based					
northwestern Arizona	matched	monitor time and effort required, apparent foaling rates and any apparent	vaccine delivery in large					
	\$350K)	injection site responses. Some burros had abscesses at injection sites and	HMAs.					
		transient lameness, which resolved. In one study group, HSUS boostered						
		2/3 of jennies by dart, though that took up to six months, while optimal						
		timing is one month.						

BLM-funded or facilitated WHB research and related projects						
8. Ohio State	2016-2020;	Goal: Develop and test polymer capsules that would be a new delivery	If the 12-month capsules			
University;	\$799,565	vehicle for porcine zona pellucida (PZP) vaccine, to increase the duration of	worked well, they could			
Electrospun delivery		vaccine effectiveness. The vaccine is in liquid form, inside the capsules.	deliver a 1-year booster			
to enhance the		Status: Data collection complete. The researchers tested capsules made	dose, which would save			
effectiveness of		from various surgical grade polymers, to determine optimal thickness of	thousands of dollars in			
immunocontraception		implantable capsules. One-month hydrophilic silicone oil + PZP emulsion,	capture costs per mare.			
strategies in equids		and 3-month, 12-month and 12+ month capsules were implanted in	Results are not yet a			
		domestic mares in summer 2017. The 1-month emulsion and 3-month	breakthough new method.			
		capsule seem to have delivered the PZP, approximately on schedule. Those				
		delivery methods led to higher antibody titer levels than the PZP-22				
		treatment. Only a very small antibody titer peak was caused by the 12-				
		month or 12+ month capsules. Different PZP batches led to different				
		antibody titer responses. Despite several materials science papers				
		published (Chaparro et al. 2019a, 2019b) and in preparation, no				
		breakthrough reductions in wild horse fertility rates are expected from this				
		work. Use of the silicone oil could provide a 1-month booster PZP dose				
		without holding animals.				
9. Purdue University;	2016-2019;	<u>Goal:</u> Develop and test new PZP-type vaccines for use in mares, making use	PZP vaccines made from pig			
Development of next-	\$78,375	of a water-soluble adjuvant, and recombinant ZP proteins. An effective	ovaries could be banned if			
generation anti-	BLM (\$375K	water-soluble vaccine could be an improvement over ZonaStat-H PZP	swine fever gets into the US			
fertility vaccines for	matching	vaccine, which requires laborious mixing and does not store well.	pig population. Having a			
horses	from HSUS)	Status: Complete. Experiment 1 identified promising new adjuvant	recombinant ZP vaccine as			
		combinations for vaccine, based on in vitro testing. Experiment 2 tested the	a backup may be needed.			
		antibody response of mares injected with rZP and the new adjuvant,				
		starting in late spring 2017; antibody titer response levels were not as high				
		as predicted, though it is not always clear how titer levels relate to fertility.				
		In experiment 3, two doses of the water soluble 'combination adjuvant,'				
		comprised of two immune-stimulating molecules (poly(I:C), and CpG) and of				
		nanoparticles (Nano-11) that adsorbed a model antigen (ovalbumin), led to				
		a stronger immune response than treatment with the model antigen alone,				
		or the antigen and the Nano-11. The systems for rZP3 and rZP2 protein				
		work; production of rZP4 in progress. In 2019, they intended to use mice to				
		test a new vaccine with rZP2, rZP3 and the 'combination adjuvant.'				

		BLM-funded or facilitated WHB research and related projects	
10. BLM; GonaCon	2015-2025	<u>Goal:</u> BLM pilot project to stabilize the number of wild horses in the Water	This project has shown that
Vaccine Pilot Project		Canyon area of the HMA at 25-30 animals. Captured wild mares from the	repeated BLM use of
		Water Canyon area of the Antelope HMA were treated with an initial dose of	GonaCon vaccine drastically
		the GonaCon-Equine immunocontraceptive vaccine in 2015, held in captivity	reduces wild horse birth
		30 days, given a booster dose of GonaCon, then released.	rates.
		Status: Monitoring by BLM staff is ongoing. 15 mares were gathered,	
		marked, treated, boostered, and released. 10 of those and 2 new mares were	
		treated in 2017. 10 previously-treated mares received boosters in 2019.	
11. Texas A&M	2015-2020;	<u>Goal:</u> Analyze genetic diversity for wild horse and burro populations, based	BLM relies on genetic
University; BLM Wild	\$98,000	on hair samples taken during capture operations.	monitoring to counter any
Horse and Burro		Status: Ongoing. This study provides monitoring information to BLM that is	claims that BLM
genetic monitoring	2020-2025;	useful for management. BLM sends hair samples to the researcher. The	management is causing
	Up to	researcher then provides genetic monitoring reports to BLM. The researcher	unacceptable inbreeding or
	\$182,625 in	has submitted a paper on metapopulation structure (genetic connections	loss of genetic diversity.
	5-year	between sampled herds; Cothran et al., In review). Current genetic	
	contract	monitoring work is via contract with the same lab.	
12. UC Davis School	2020 ⁸ ;	Goal: First, develop veterinarians' skills in a minimally invasive sterilization	This is a minimally-invasive
of Veterinary	\$0 No BLM	method, where mare oviducts are blocked by a transcervical approach.	sterilization method. There
Medicine; Minimally	funding yet.	Status: Ongoing early trials. A pilot study with 6 mares showed infertility for	may be a relatively higher
invasive mare	\$160,000	more than 3 years, and anatomical signs of sterility. The California	level of public support
sterilization	funded by	legislature funded phase 1 of the project, for veterinary training with	among some wild horse
	California	domestic horses. Researchers have demonstrated success in domestic	activists, compared to
	Legislature	burros, and intend to soon conduct trials in domestic horses. Phase 2 may	surgical removal of ovaries.
		include a field trial of the method with BLM wild horses.	

⁸ This study is not yet BLM-funded or approved, but California passed a law funding a proposal that seeks BLM's involvement in testing this method in the near future. WHB Research Materials for Advisory Board_June 2021_11

		BLM-funded or facilitated WHB research and related projects	
13. University of	2010-2017;	Goal: The project supported development of a 3-year or 4-year PZP pellet	This project showed that
Toledo ; Development	\$2,165,000	vaccine, testing that PZP-22 vaccine pellets caused 2 years of	PZP-22 vaccine pellets are
of a 3-4 year		contraception, and PZP-22 production costs, for management use.	not as effective as had been
controlled release		Status: Complete. The work builds on earlier studies (Turner et al. 2007,	expected. Much of the cost
PZP contraceptive		2008). A captive trial at the Carson City prison facility showed that PZP-22	of the project was to pay for
vaccine for wild		was not providing even the second year of contraception that was	PZP-22
horses		expected. PZP-22 pellets provided only 1 year of contraception, and at a	
		fairly low rate – but <i>are</i> convenient for providing the PZP booster dose	
		without needing to re-capture or dart a horse. The vaccine pellets that had	
		been intended to work for 3-4 years simply did not. The PZP-release profile	
		of a new design of 12-month pellets, in vitro showed that those pellets	
		degraded by month 10, over the course of 3-4 weeks. BLM now procures	
		PZP-22 vaccine pellets through a contract with U. of Toledo. Though there	
		have been several papers about use of PZP-22 (most recently, Rutberg et al.	
		2017, Carey et al. 2019), negative results from the Carson City trial have not	
		been published.	
14. University of	2005-2010	<u>Goal</u> : Develop and test polymer pellet-based PZP vaccine, with long-lasting	PZP-22 has the benefit of
Toledo. (PZP-22)		effects, now known as "PZP-22."	not requiring mares to be
		Status: Complete. The pelleted form, PZP-22 vaccine, is helpful for	held for 30 days to get a
		management. Mares can be treated with one liquid dose and one set of PZP	booster dose. BLM still uses
		pellets, without the need for the mares to be held 30 days to get a booster	this formulation of PZP
		dose. Early results suggested that this form of PZP vaccine may be	vaccine
		effective for 22 months, though that duration has not been consistently	
		replicated in later results. (Turner et al. 2007, 2008)	
15. Humane Society	2008-2013,	<u>Goal</u> : Test the efficacy of PZP-22 pellet vaccine in free-roaming wild horse	PZP-22 vaccine pellets
of the US, PZP field	(jointly	herds.	require a booster dose to
trials (the 'Annenburg	funded by	Status: Complete. Field work at Sand Wash Basin HMA and Cedar Mountain	cause moderate fertility
Study')	HSUS)	HMA included initial treatment with PZP-22, which led to relatively low	control reduction for 3
		efficacy 2 years after treatment. Following booster treatment with PZP-22	years.
		or a liquid PZP vaccine, up to 3 years of moderate efficacy followed	
		(Rutberg et al. 2017).	

BLM-funded or facilitated WHB research and related projects						
16. USGS; Pen trials	2011-2015;	Goal: Conduct two trials of SpayVac, to test for long-lasting effects.	Earlier studies showed			
of the SpayVac PZP	\$127,379	SpayVac is a PZP-based immunocontraceptive with liposome technology.	promising results from a			
vaccine	(2 nd trial)	Status: Complete. The initial trial from 2011-2014 led to fertility rates of	formulation of SpayVac			
		13%, 47%, and 13 % in three years, respectively, after treatment with an	vaccine, but the SpayVac			
		aqueous emulsion formulation. The nonaqueous formulation led to poor	vaccine had unexplained,			
		fertility control and that portion of the study was discontinued. Results	poor results in a follow-up			
		stemming from the 2012-2014 trial were published (Mask 2015, Roelle et al.	trial.			
		2017, Bechert et al. 2018b). In 2014, a second pen trial ("SpayVac II") aimed				
		to identify optimal adjuvant formulation for the aqueous formulation.				
		However, that second trial was discontinued in spring 2015, after results				
		indicated that both forms of the aqueous SpayVac formulation did not				
		substantially reduce fertility in treated mares (53% and 70% pregnant in two				
		treated groups, compared to 83% in untreated mares). Negative results from				
		the second trial (Roelle 2015) have not yet been published. Injection site				
		has been hypothesized to play a role (Bechert et al. 2018a).				
17. USGS; Studies of	2001-2014;	Goal: Characterize safety and effectiveness of PZP and GonaCon vaccines;	Many papers from these			
demography,	\$0 (funded	summarize wild horse demographic information; characterize behaviors;	studies are important			
behavior, ecology, and	by USGS,	describe ecological effects of wild horses as a function of density.	references for WHB			
immunocontraception	other than	Status: Complete. PZP effectiveness and immune site reactions were	management decisions.			
and wild horses	gathers and	quantified (Roelle and Ransom 2009, Ransom et al. 2011). Wild horse				
	survey	demography was summarized (Roelle et al. 2010, Ransom et al 2016).				
	flights)	Studies of wild horse behavior (Ransom 2009) included effects of GonaCon				
		vaccine (Ransom et al. 2014). Population models showed that female				
		sterilization poses few risks to most wild horse herds' viability (Roelle and				
		Oyler McCance 2015). Wild horse grazing ecology was described				
		(Ziegenfuss et al. 2014, Schoenecker et al. 2016).				
18. USGS (Western	2016-2021;	Goal: Study Sage-grouse populations to determine effects of non-native	The result that wild horse			
Ecological Research	\$280,000	grasses, wildfire patterns, wild horse and livestock grazing, and land uses.	herds over AML have direct			
Center); Stressors to	(Funded by	Status: Ongoing. Observational work indicates that wild horse presence	negative effects on Sage-			
Greater Sage-grouse	NOC)	may reduce sage grouse numbers at lek sites (Muñoz et al. 2020). A	grouse populations			
		forthcoming paper provides evidence that wild horse herds above AML have	underscores the importance			
		negative effects on Sage-grouse population growth rates (Coates et al. In	of bringing herd levels down,			
		press)	in Sage-grouse habitats.			

BLM-funded or facilitated WHB research and related projects						
19. USGS; Effects of	2019-2021;	Goal: This is primarily a Sage-grouse study; no BLM WHB funds are	This study would inform			
wild horses and	\$381,060	earmarked for this work. The goal is to study effects of wild horses and	land-management decisions			
livestock on	from BLM	livestock on sage grouse reproduction, survival and habitat structure in	where wild horses overlap			
sagebrush	Nevada, and	several areas of Nevada.	with Sage-grouse.			
ecosystems	\$357K from	Status: Ongoing. USGS has worked with BLM Nevada to study livestock and				
	USGS)	sage grouse in several areas. In winter 2019, BLM conducted a gather in				
		Desatoya HMA, and USGS deployed GPS tail tags on a small number of				
		fertility control-treated horses that were turned back to the range, to study				
		their movements.				
20. USGS; Population	2015-2022;	<u>Goal:</u> Study survival, fertility, fecundity, and recruitment rates; movement	Population models for cost-			
demography and	\$1,287,654 ³	patterns; range use; habitat selection; and social behavior of wild horses.	benefit analyses rely on			
ecology of wild horses		Status: Ongoing. About 95 horses were captured at Frisco HMA via a	accurate demographic rates			
in two sentinel herds		helicopter gather in summer 2016, with more captured in January 2017.	 such as from this wild 			
in the western United		Horses were fitted with radio collars or radio tags, then released.	horse study.			
States		Observations began after radio marking and are ongoing through 2019.				
		Aerial surveys took place in spring 2017, 2018, and 2019. The untreated				
		portion of the Warm Springs HMA, where a cancelled spay study was				
		intended to occur, was proposed to have been the second sentinel				
		demography herd site; next steps for the second site are uncertain at				
		present.				
21. USGS;	2015-2020;	<u>Goal:</u> Study survival, fertility, fecundity, and recruitment rates; movement	Population models for cost-			
Demography of two	\$717,081 ³	patterns; range use; habitat selection; and social behavior of wild burros.	benefit analyses rely on			
wild burro populations		Status: Data collection complete. At Sinbad HMA, 30 burro jennies were	accurate demographic rates			
in the western USA		returned to the range with GPS radio collars in 2016. Field work to monitor	– such as from this wild			
		their welfare, movements, behavior, survival, and foaling took place May-	burro study			
		September in 2016 and March-September 2017, 2018, and 2019, with				
		monthly welfare checks in winter. The most recent aerial survey at Sinbad				
		HMA took place in October 2018. At Lake Pleasant HMA, trapping and				
		collaring began in December 2016 and was completed in July 2018. 30				
		Jennies got USGS collars, and another 26 got AGFD collars (see AGFD				
		project, above). Observations are ongoing through 2020 at Lake Pleasant.				
		An aerial survey took place at Lake Pleasant HMA in June 2017.				

		BLM-funded or facilitated WHB research and related projects	
22. University of	2016-2020;	Goal: Assess habitat use, and movement in / out of checkerboard lands, and	This study has mostly local
Wyoming; Adobe	\$40,000	potentially across state lines, in Adobe Town HMA, Wyoming.	applications, showing how
Town HMA Wild	(\$120K	Status: Data collection complete. 14 mares were fitted with radio collars	horses move across
Horse GPS Collar	matching	after bait trapping in early 2017, and 23 radio collars were placed on mares	'checkerboard' ownership in
Study	from WY	in October 2017 in conjunction with a helicopter-gather in the HMA. Collars	a large HMA. Understanding
	Dept. of Ag.)	dropped off in October 2019. Results will contrast horse habitat use with	local movements may help
		habitat use by pronghorn antelope and Greater sage-grouse in the same	in future gathers and
		region, based on GPS collars and tags on those other species. (Hennig et al.	rangeland impacts.
		2018, Hennig et al. 2020a).	
	0016 0001		
23. Arizona Game and	2016-2021;	Goal: Use GPS collars on wild burro females (Jennies), to determine	ADOT funded the
Fish Department;	\$0 from	movement patterns near roads, identify key crossing points, and infer what	researchers, and BLM
Evaluation of burro	BLM to	types of highway fencing could help to prevent burro-vehicle collisions.	funded the captures.
movements and	AGFD, but	Status: Data collection complete. Irapping near the Lake Pleasant HMA	Because of these results,
collisions along roads	BLM did	took place February 2017 - July 2018. 26 burros were collared. Up through	ADOI has started to change
near Lake Pleasant	fund	early 2019, two died in vehicle collisions and four others died for unknown	roadside fencing in this area
НМА	capture	reasons that may have been related to drought. The study identified	- this has likely reduced the
	costs	geographic areas and specific roadside features to improve, to reduce burro	number of burro collisions.
	(~\$200K AZ	vehicle collisions (Gagnon et al. 2018). For example, they found that 4-	
	DOT.	strand barbed wire works well if it is maintained, with no breaks or gaps.	
	funding)		
24. USGS; Testing the	2015-2016;	Goal: Test the use of distance-based analysis along with infrared aerial	An infrared camera,
Accuracy of High-	\$0 (funded	surveys, in an area with known horse population size.	mounted under a manned
definition Infrared	by Wyoming	Status: Complete. I wo infrared aerial surveys were conducted at the	airplane, can lead to
Imaging for Wild	Dept. of	McCullough Peaks HMA: in fall 2015 in the daytime and at night in summer	accurate herd size
Horse Aerial Surveys	Agriculture)	2016. Estimated population sizes from that survey were close to known	estimates in open habitat
		population sizes, due to high detection rates. However, the distance	types.
		analysis method was unable to determine what fraction of animals were	
		missed. Costs are higher than typical surveys, and the method may not	
		work in areas with more tree cover. (Schoenecker et al. 2018).	

	BLM-funded or facilitated WHB research and related projects						
25. USGS; Developing	2015-2019;	Goal: Test two new population survey methods for wild burros: use of	Burros are often				
and testing aerial	\$185,139 ³	infrared cameras; and using information from radio collared burros in	undercounted even more				
survey techniques for		double-observer surveys.	than horses. Accurate and				
wild burros		Status: Data collection complete. In Sinbad HMA, USGS and BLM completed	repeatable population				
		3 infrared surveys and have conducted 5 double observer surveys, 4 using	surveys are vital to inform				
		the radio collared animals. A fall 2017 survey at Lake Pleasant HMA	BLM managers of herd size				
		collected data using radio collared animals. In 2016 and 2017 USGS and	status and to evaluate				
		BLM helped with burro aerial surveys at Fort Irwin NTC (Dept. of Defense),	management action				
		which will contribute data to the double-observer sightability modeling. One	outcomes.				
		more survey (at Lake Pleasant) is planned for FY2020, with data analysis					
		using the full data set to follow.					
26. USGS; Non-	2014–2015;	<u>Goal:</u> Collect and analyze fecal DNA as a noninvasive method to determine	This study demonstrated				
invasive (fecal)	\$178,538	genetic diversity and estimate population size. Also, test for presence of	that BLM could use DNA				
genetic sampling of		invasive species, and seed germination.	from horse dung to estimate				
free-roaming horses		Status: Complete. Feces collection and analysis concluded in 2015. This	herd sizes, and measures of				
to estimate		seems to be a suitable method for population estimation in small areas,	genetic diversity. However,				
population size,		though the costs are currently high. USGS has published manuscripts: on	as of today it costs several				
genetic diversity, and		environmental degradation of horse fecal DNA (King et al. 2018. Ecology	times more than aerial				
consumption of		and Evolution); on diet analysis (King and Schoenecker 2019 Rangeland	surveys, and only works well				
invasive species		Ecology and Management); on cheatgrass in feces (King et al 2019); and on	in small herds.				
		using mark-recapture techniques to estimate population size (Schoenecker					
		et al, In press).					
27. USGS;	2001-2014;	<u>Goal</u> : Develop and test new aerial survey methods for wild horses.	BLM has adopted				
Development and	\$0 (funded	Status: Complete. The 'simultaneous double-observer' and the 'photo mark-	recommendations of NAS				
testing of new aerial	by USGS,	resight' aerial survey methods were validated by successful comparing	(2013), and now largely uses				
survey methods for	other than	estimated herd sizes and known herd sizes (Lubow and Ransom 2009,	double-observer SOPs for				
wild horses	BLM flight	Ransom 2012, Lubow and Ransom 2016, Ekernas 2019, Griffin et al. 2020)	flights.				
	costs)						

BLM-funded or facilitated WHB research and related projects						
28. WEST, Inc.;	2016; \$0	Goal: Tested a distance-based aerial survey method, similar to those now	This aerial survey method			
Testing double-	(funded by	used by BLM ("double-observer" method), but is based on an incomplete	led to confidence intervals			
observer plus	Wyoming	sample of the surveyed areas.	that were not nearly precise			
distance methods for	Dept. of	Status: Complete. The contractor completed aerial surveys over areas	enough for BLM			
aerial surveys	Agriculture)	including the North Lander complex and Red Desert complex in 2016. In a	management needs.			
		final report sent December 2016, the contractor's method estimated lower				
		horse abundance for the North Lander complex than was counted visually				
		by BLM staff on a 2016 helicopter survey in the same area. The researchers				
		used the same method to estimate feral horse abundance on Navajo Nation				
		lands in 2017 (Wallace et al. 2017, 2020).				
29. BLM; Census of	2018-2019;	<u>Goal:</u> Pilot project that will attempt to use image classification technology	For now, available free			
wild horse	\$0 (staff	to determine whether or not an algorithm can developed to accurately	satellite imagery is too			
populations via	time	identify horses from available satellite or other aerial imagery. A BLM	coarse to use for counting			
remote sensing	supported	Wyoming employee conducted the project as part of her masters degree	wild horses.			
analysis	by BLM	program in GIS, through Kent State University.				
	Wyoming)	Status: Complete. Wild horses were not visible often enough in satellite				
		imagery to be used in the pilot study. The resolution of the imagery used				
		(~18 inch pixels) was also not good enough to reliably identify cows.				
30. University of	2014–2015;	<u>Goal:</u> Use wildlife cameras to record use of riparian areas by wild horses,	This project confirmed that			
Idaho; Focus on	\$19,999	livestock, and wildlife, and vegetation measures in those areas.	wild horses can have greater			
Impact of Wild Horses		Status: Complete. Wild horses influenced riparian streambank conditions	per-capita ecological			
on Riparian Areas		and herbaceous stubble height to a greater degree than livestock, which	impacts on riparian areas			
		also had an effect. The study found no statistical relationship between wild	than cattle.			
		horse presence and wildlife presence. Published results showed that per-				
		horse impacts on riparian disturbance, vegetation height, and biomass were				
		greater than per-cow impacts (Kaweck et al. 2018).				
31. USGS; Modeling	2014–2017;	<u>Goal:</u> Develop a coarse model to evaluate changes in animal carrying	Carrying capacity models			
Carrying capacity of	\$0 (funded	capacity in response to changes in vegetation production.	can overestimate forage			
free-roaming horses	by USGS)	Status: Suspended. USGS received data from various sources. The carrying	capacity if they rely on			
(with Colorado State		capacity model was developed at Colorado State University. After final input	outdated or inaccurate			
University		using range health data to ground truth the statistical model, CSU is	information.			
cooperation)		revising its analysis in light of feedback from BLM received February 2017.				

BLM-funded or facilitated WHB research and related projects			
32. Great Lakes	2015-2016;	Goal: Assess demand for wild horses and burros through adoption and	BLM has taken
Marketing Research;	\$109,300	sales and to develop strategies for placing more animals into private care.	recommendations from this
Analysis and		Status: Complete. The contractor prepared analyses, presented final reports	study into account, for
evaluation of demand		to the BLM, and led webinars on the implications.	marketing, adoption, sales,
for off-range WHB			and event planning.
33. USGS; Developing	2014–2016;	<u>Goal:</u> Develop and test four radio collar designs and two designs for mane	This project ensured that
a suitable radio collar	\$139,248	and tail radio tags. Assess behavior and monitor for any injuries caused.	other studies could happen
or radio tag for feral		Status: Complete. Fieldwork in captivity was completed March 2016. No	without the risks of injuring
horses and burros		substantial injuries were observed in mares, stallions, or jennies. Collars	horses. This study showed
		went over the ear of several stallions, so USGS recommended against their	risks to stallions, so BLM
		use on stallions. Further field testing is ongoing. Collared mares are	does not now use radio
		checked once per month, to ensure there are no negative effects. Collars	collars on stallions.
		that slipped up over mares' ears have been dropped off remotely or	
		otherwise removed. (Schoenecker et al. 2020, Hennig et al. 2020b).	
34. UC Davis; Wild	2014-2015;	<u>Goal</u> : Determine whether shade is necessary for captive horse health, at	Results of this study helped
Horse and Burro	\$48,472	BLM's Palomino Valley Center WHB corrals.	to inform 2015 revisions to
Shade Study		Status: Complete. In the range of observed temperatures, horses used	BLM's private care shelter
		shade for comfort, but it was not a requirement for animal health. (Holcomb	requirements.
		and Stull 2016, Holcomb 2017)	
35. USDA APHIS;	2014-2015;	<u>Goal</u> : Clinical evaluation of whether shade is necessary for captive horse	Results of this study helped
Evaluation of	\$0 (~\$3,000	health, based on measurements at Palomino Valley Center.	to inform 2015 revisions to
Mustang and Burro	paid by	Status: Complete. The researchers used thermal imaging to determine heat	BLM's private care shelter
Thermal Environment	USDA	balance in horses and burros at the corrals. In the range of observe	requirements.
at PVC	APHIS)	temperatures, so long as healthy animals have adequate water, no shade	
		structures are needed.	
36. University of	2015-2017;	<u>Goal:</u> This project ended early. The project aimed to help determine the	Negative results from the
Kentucky; Tubo-	\$120,228	effectiveness of placing a polyamide (nylon) cable tie around the ovarian	project led to its early
ovarian ligation via	spent pre-	pedicle and oviduct of mares via colpotomy for tubo-ovarian ligation.	ending. The specific surgical
colpotomy as a	closeout.	Status: Discontinued. Initial trials showed that the new instrument was	method has been ruled out.
method for	Original	effective for ligature placement. Several mares in the study, however,	
sterilization in mares	budget	developed adhesions near the ovaries that caused concern. The project	
	\$391,369	ended 1/31/2017, and remaining funds (~\$271K) were deobligated in early	
		FY2017.	

BLM-funded or facilitated WHB research and related projects			
37. Louisiana State	2016-2018;	Goal: Develop and test an injectable protein to decrease female and male	Negative results from the
University; The use of	\$295,992	gonad viability. The drug would destroy the cells that control	project led to its early
membrane disrupting	spent pre-	spermatogenesis in the male and follicle growth, oocyte development,	ending. The method has
peptide / peptoid	closeout.	ovulation and cyclicity in the female.	been ruled out.
LHRH conjugates to	Original	Status: Discontinuted. Due to negative results, this project was closed out,	
control WH&B	budget	and the remaining funds (~\$554K) were deobligated in early FY2019. The	
populations	\$850,002	research group identified peptide conjugates that were most effective at	
		targeting LHRH receptor cells <i>in vitro</i> , while at the same time not destroying	
		blood cells. Even at very high daily doses, the ponies did not cease to	
		ovulate.	
38. USGS; Monitoring	2019;	<u>Goal:</u> This project would have determined the behavioral and demographic	This would have been BLM's
responses of wild	~\$800	effects of having a portion of sterilized mares in a wild horse population.	first use of surgical mare
horse behavior and	spent on	BLM would conduct the treatments with a veterinary contractor. USGS	sterilization. Whether
demography to BLM	pre-work	involvement would be limited to studies of on-range outcomes, after	surgical or through some
management		treatment.	other means, sterilizing
treatment (mare		Status: Cancelled before the study began. The project as outlined in 2018	mares would reduce growth
sterilization;		was suspended. An earlier proposal included Colorado State University, but	rates more than any
cancelled)		following intense public pressure, that university chose to remove itself	temporary treatment. The
		from the research. A revised USGS research proposal was approved by BLM,	study was cancelled.
		and a Decision Record was signed on September 12, 2018. However,	
		litigation regarding NEPA adequacy and public viewing forced BLM to	
		rescind that decision and withdraw the project from consideration at that	
		location.	
39. Ipsos Public	2014; \$0	<u>Goal:</u> Improve understanding of public perceptions, values, and preferences	No management
Affairs; Assessing	Spent	regarding the management of wild horses and burros on public rangelands.	applications; the project
knowledge, attitudes,		At the time, there was no polling data that measures public opinion about	was never started.
preferences, and non-		WHB issues, based on a statistically sound sampling design.	
market values		Status: Cancelled. BLM sought but did not get approval from the Office of	
regarding WH&B		Management and Budget (which oversees Privacy Act concerns) to conduct	
populations and		focus groups. A Utah State University study has, since then, conducted	
management		nationwide polling (see "Other WHB-related projects funded entirely by BLM	
(cancelled)		partners or other sources," below)	

BLM-funded or facilitated WHB research and related projects				
40. Oregon State	2015-2016;	Goal: Researchers would have determined whether ovariectomy via	No management	
University; Functional	\$8,834	colpotomy can be safely and effectively performed on pregnant and non-	applications; the project	
assessment of	spent pre-	pregnant wild horse mares.	was never started.	
ovariectomy (spaying)	closeout.	Status: Cancelled before the study began. Although the project was		
via colpotomy in wild	Original	approved and some spending occurred, this project never started; it was		
mares (cancelled)	budget	cancelled. Public pressure on the university partner, and particulars of		
	\$42,063	litigation, led to BLM withdrawing its decision to support this research		
		project on September 9, 2016.		
41. Oregon State	2015–2016;	Goal: The project would have evaluated two procedures, tubal ligation and	No management	
University; Evaluation	\$498 spent	hysteroscopically-guided laser ablation of the oviduct papilla in standing	applications; the project	
of minimally invasive	pre-	sedated mares.	was never started.	
methods of	closeout.	Status: Cancelled before the study began. Although the project was		
contraception in	Original	approved and some spending occurred, this project never started; it was		
WH&B mares	budget	cancelled. Public pressure on the university partner, and particulars of		
(cancelled)	\$315,189	litigation, led to BLM withdrawing its decision to support this research		
		project on September 9, 2016.		
	Oth	er WHB-related projects funded entirely by BLM partners or other sources		
Utah State University	2020-2021	<u>Goal</u> : Conduct national polling about public attitudes toward WHB	Sound data on public	
	(not BLM-	management.	opinions may be informative	
	funded)	Status: Ongoing. 3,000+ individuals were polled on topics related to	for management, and useful	
		management, costs, and public attitudes. Results were presented at the	for messaging and outreach.	
		2020 FREES conference, and publication is in preparation.		
University of	Ongoing	<u>Goal:</u> Test the safety and efficacy of a flexible, plastic-coated, magnetic IUD.	This design of IUD may be	
Massachusetts	(not BLM-	Status: Ongoing. Pen trials have demonstrated that the iUpod prevents	another useful tool in	
	funded)	pregnancy and prolongs the time between estrus cycles (Gradil et al. 2019,	contraception.	
		Joonè et al. 2021). Ongoing field work aims to test whether free-roaming		
		IUD-treated mares are contracepted, in the company of fertile stallions.		
National Park Service,	2009-2015;	Goal: Test the efficacy and behavioral effects of GonaCon vaccine on feral	If only one dose is used	
Colorado State	\$0 (funded	horses in Theodore Roosevelt NP.	GonaCon vaccine is only	
University, and USGS	by National	Status: Complete. NPS supported this initial work, which confirmed that a	moderately effective to	
	Park	single dose of GonaCon vaccine can cause moderate reductions in mare	reduce mare fertility.	
	Service)	fertility. Behaviorally, GonaCon-treated mares were comparable in some		
		ways to pregnant mares. (Baker et al. 2013, Ransom et al. 2014b)		

Other WHB-related projects funded entirely by BLM partners or other sources			
Wildlife Protection	Ongoing	<u>Goal:</u> Develop a bait station to remotely deliver contraceptive vaccine darts.	The invention could deliver
Management, Inc.	(funded by	Status: Ongoing. The company has a patented prototype for remotely	fertility control vaccines to
	NM Small	triggered vaccine darting at a feed bait station. The system can read	wild horses at bait stations.
	Business	identification chips. Dart delivery is to the pectoral muscles. Facial	It has not yet been used in
	Assistance /	recognition software may identify individual horses. Ongoing tests of	the wild.
	Sandia Labs)	private, free-ranging (not federally protected) horses.	
US Navy; Testing the	2016; \$0	<u>Goal:</u> Test the use of infrared and visual spectrum cameras mounted on a	Unmanned drones would
accuracy of horse and	(funded by	military Tiger Shark Unmanned Aerial Vehicle (UAV), to survey horses and	need high quality sensors if
burro surveys, using a	Department	burros at Centennial HMA (China Lake Naval Weapons Station).	they will be used in wild
drone-mounted	of Defense)	Status: Complete. Over flights in December 2016, the sensor package on the	horse and burro surveys.
infrared camera		drone did not perform well when panned out at a wide angle. This was not	
		suitable for surveying large areas. Future flights could be improved by a	
		sensor system with a more sensitive infrared camera.	
University of Alaska,	2013-2017	<u>Goal</u> : Document Native American oral histories and indigenous knowledge	Indigenous knowledge
Fairbanks; Indigenous	(not BLM-	about horses in North America, and contrast with western scientific views.	about wild horses may be an
peoples and the horse	funded)	Status: Dissertation defended in 2017 (Running Horse Collin 2017)	important human
			dimension, including in BLM
			and tribal management.
University of	Ongoing	<u>Goal:</u> Use camera-traps to document interactions between wildlife,	The study is documenting
California Agricultural	(funded by	livestock, and wild horses, on the Modoc plateau.	wild horses competing with
Extension	USFS)	<u>Status: Ongoing.</u> Photo analysis is ongoing; no publications yet. This study	wildlife and livestock.
		is documenting use and habitat quality at water sources.	
Brigham Young	Multi-year	<u>Goal:</u> Use camera-traps to monitoring springs on the Dugway proving	The study is documenting
University / US Army	(funded by	grounds, southeast of Salt Lake City, to assess WH – wildlife interactions.	wild horses competing with
Dugway Proving	DoD)	Status: Complete. This research group has published two papers	wildlife and livestock.
Grounds		demonstrating that native wildlife are negatively affected by the presence of	
		wild horses near water sources (Hall et al. 2016, 2018).	
Arizona Game and	Multi-year	Goal: Assess impacts of wild burros on indicators of biodiversity.	Wild burro impacts in
Fish Department	(tunded by	Status: Field data collection complete; analysis n progress. Field work	Arizona have not been
	AGFD)	included measurements of bird, small mammal, bat, herpetological,	systematically assessed
		macroinvertebrate, and vegetation communities, as well as burro scat index	prior to this study.
		counts, in areas with estimated burro density.	

Other WHB-related projects funded entirely by BLM partners or other sources			
University of Nevada,	Ongoing	<u>Goal:</u> Use vegetation sampling, Greater sage-grouse locations, and horse,	The study confirms that wild
Reno	(not BLM-	wildlife and livestock fecal transects to characterize ungulate versus sage-	horses impact Greater sage-
	funded)	grouse habitat use in and near the Sheldon National Wildlife Refuge.	grouse population growth.
		Status: Complete. Heavy grazing by wild horses or livestock reduces sage-	
		grouse chick survival, but effects on nest survival less so (Street 2021). The	
		project may continue with post-doctoral research.	
University of	2019-2023;	<u>Goal:</u> Study the ecosystem attributes (flora, fauna, physical measures)	The study might suggest
Technology, Sydney	\$0 (NPS	before and after burro removals from Death Valley NP and the Mojave	that predation risk reduces
(Australia); Effect of	permitted;	National Preserve.	burro use at springs, and
burro removal from	externally	Status: Ongoing. Predation on burros by cougars, and burro behavioral	increases riparian habitat
California springs	funded)	avoidance of water sites where cougars are found, has been documented.	value to other species.
University of Arizona	2015-2018	<u>Goal</u> : Document ecological effects of wild burros in desert riparian areas	Wild burros appear to
	(not BLM-	Status: Complete. Study documented that burros dig 'wells' that can allow	facilitate water availability
	funded)	for water access in sandy / gravelly beds of intermittent streams (Lundgren	and seedling germination in
		et al. 2021)	some environments.
University of Nevada	2018-2019;	Goal: Collate and consider existing records on riparian conditions and wild	This study is looking for
Reno; Nevada riparian	\$0 (funding	horse numbers in areas of Nevada.	correlations between wild
management in WHB	from USFS)	Status: UNR began to collect the desired records in 2020.	horse use and riparian
use areas			condition.
University of	2015-2020;	Goal: Review available literature on wild horse interactions with livestock	The review of capture
Wyoming; Animal-	\$0 (funding	and native ungulates.	outcomes confirms that
plant interaction	from WY	Status: Several review papers completed, addressing dietary overlap	BLM has lower mortality
ecology on Wyoming	DOT)	(Scasta et al. 2016), human dimensions (Scasta 2019a, Scasta et al. 2020),	than most other wildlife
rangelands		and a review of BLM animal welfare outcomes at gathers (Scasta 2020).	capture operations.
Arizona State	2014-2016;	<u>Goal:</u> Use camera traps to monitor burro behaviors near water sources.	Burros may facilitate water
University	\$0 (not BLM-	Status: The study documented burros digging out water sources in sandy	availability for other wildlife
	funded)	washes, creating 'wells' of water that are then available for other wildlife	species in some areas.
		species. (Lundgren et al. 2017).	
UC Davis Emeritus	2016-	Goal: Test the use of cyanoacrylate glue in mare oviducts, to prevent	This sterilization method is
researcher; Non-	ongoing; \$0	fertility.	relatively non-invasive. It
surgical sterilization	(self-funded)	Status: Complete. The technique is exacting. A pilot study of 6 treated	requires uncommon
of mares		mares indicated success for up to 3 years or more.	veterinary expertise.

Other WHB-related projects funded entirely by BLM partners or other sources			
New Mexico State	2015-2017;	Goal: Monitor the movements of radio-collared burros, the effectiveness of	Wild burro jenny fertility
University / USGS	\$0 (funded	PZP vaccines for jennies, and of vasectomy for jacks.	levels can be affected by
Wildlife Coop Unit;	by Dept. of	Status: 19 jennies were treated with PZP, including 7 that were immobilized	fertility control vaccine
Ecology of feral	Defense)	with etorphine + xylazine. 24 jacks were vasectomized. Data collection	treatments.
burros on the National		concluded in 2017. Results are in press (Gedir et al. In press).	
Training Center Fort			
Irwin, California			

Literature Cited

The following list is of references noted in the table above, and mainly includes work resulting from BLM funding or logistical support. Omission of any such work is not intentional. Many other WHB-related scientific publications have been published since 2005, but are not included here.

- Baker, D.L., J.G. Powers, M.O. Oehler, J.I. Ransom, J. Gionfriddo, and T.M. Nett. 2013. Field evaluation of the Immunocontraceptive GonaCon-B in free-ranging horses (*Equus caballus*) at Theodore Roosevelt National Park. Journal of Zoo and Wildlife Medicine 44:S141-S153.
- Baker D.L., J.G. Powers, J.I. Ransom, B.E. McCann, M.W. Oehler, J.E. Bruemmer, N.L. Galloway, D. C. Eckery, and T. M. Nett. 2018. Reimmunization increases contraceptive effectiveness of gonadotropin-releasing hormone vaccine (GonaCon-Equine) in free-ranging horses (Equus caballus): Limitations and side effects. PLoS ONE 13(7): e0201570.
- Bechert, U., Bartell, J., Kutzler, M., Menino, F., Bildfell, R., Anderson, A., and Fraker, M. 2013. Effects of two porcine zona pellucida immunocontraceptive vaccines on ovarian activity in horses. Journal of Wildlife Management 77(7):1386-1400.
- Bechert, U., and Fraker, M. 2018a. Twenty years of SpayVac® research: potential implications for regulating feral horse and burro populations in the United States. Human-Wildlife Interactions 12(1):117-130.
- Bechert, U., J. Rohde, H. Freer, and B. Wagner. 2018b. IgG4/7 responses correlate with contraception in mares vaccinate with SpayVac. Theriogenology 121:168-174.
- Carey, K.A., A. Ortiz, K. Grams, D. Elkins, J.W. Turner, and A.T. Rutberg. 2019. Efficacy of dart-delivered PZP-22 immunocontraceptive vaccine in wild horses (*Equus caballus*) in baited traps in New Mexico, USA. Wildlife Research 46:713-718.
- Chaparro, F.J., K.F. Presley, M.A. Coutinho da Silva, and J.J.Lanutti. 2019. Sintered electrospun polycaprolactone for controlled model drug delivery. Materials Science and Engineering C 99:112-120.
- Chaparro, F.J., K.F. Presley, M.A. Coutinho da Silva, N. Mandan, M.L. Colachis, M. Posner, R.M. Arnold, F. Fan, C.R. Moraes, and and J.J.Lanutti. 2019. Sintered electrospun poly(*ϵ*-caprolactone)−poly(ethylene terephthalate) for drug delivery. Journal of Applied Polymer Science 136(26):47731.
- Coates, P.S., S.T. O'Neil, D. Muñoz, and I. Dwight. In Press. Free-Roaming Horses Adversely Impact Greater Sage-Grouse Population Dynamics in Sagebrush Ecosystems. Journal of Wildlife Management (In Press).
- Cothran, E.G., B.W. Davis, A. Khanshour, S. Funk, E. Conant, R.C. Booker and R. Juras. In review. Genetic diversity in populations of feral horses on public lands in the western United States.
- Davis K.A., K.M. Klohonatz D.S.O. Mora, H.M. Twenter, P.E. Graham, P. Pinedo, D.C. Eckery, and J.E. Bruemmer. 2018. Effects of immunization against bone

morphogenetic protein-15 and growth differentiation factor-9 on ovarian function in mares. Animal Reproduction Science 192:69-77.

- Ekernas, L.S., and B.C. Lubow. 2019. R script to analyze simultaneous double observer wild horse and burro aerial surveys. U.S. Geological Survey software release. URL: https://code.chs.usgs.gov/fort/whas, doi: https://doi.org/10.5066/P946MHTZ.
- Gagnon, J.W., C. Beach, C.D. Loberger, K.S. Ogren, and S.C. Sprague. 2018. Inventory right-of-way fence and associated features in the Lake Pleasant area. Supplement to SPR-753: Strategies to Reduce Burro-Vehicle Collisions in the Lake Pleasant Area. Arizona Game and Fish Department (AGFD) report to Arizona Department of Transportation. AGFD, Phoenix, Arizona.
- Gedir, J.V., J.W. Cain, B.C. Lubow, T. Karish, D.K. Delaney, and G.W. Roemer. In press. Estimating Abundance and Assessing the Efficacy of Fertility Control in Feral Burros. Journal of Wildlife Management.
- Gradil, C.M., C.K. Uricchio, and A. Schwarz. 2019. Self-Assembling Intrauterine Device (Upod) Modulation of the Reproductive Cycle in Mares. Journal of Equine Veterinary Science 83: 102690.
- Griffin, P.C., L.S. Ekernas, K.A. Schoenecker, and B.C. Lubow. 2020. Standard operating procedures for wild horse and burro double-observer aerial surveys. U.S. Geological Survey Techniques and Methods, book 2, A16.
- Hall, L.K., R.T. Larsen, M.D. Westover, C.C. Day, R.N. Knight, and B.R. McMillan. 2016. Influence of exotic horses on the use of water by communities of native wildlife in a semi-arid environment. Journal of Arid Environments 127:100-105.
- Hall, L.K., R.T. Larsen, R.N. Knight, and B.R. McMillan. 2018. Feral horses influence both spatial and temporal patterns of water use by native ungulates in a semiarid environment. Ecosphere 9(1):e02096.
- Hennig, J.D, J.L. Beck, and J. D. Scasta. 2018. Spatial ecology observations from feral horses equipped with global positioning system transmitters. Human-Wildlife Interactions 12:75-84.
- Hennig, J.D., J.L. Beck, C.J. Gray, and J. D. Scasta. 2020a. Temporal overlap among feral horses, cattle, and native ungulates at water sources. Journal of Wildlife Management. DOI: 10.1002/jwmg.21959.
- Hennig, J.D, J. D. Scasta, J.L. Beck, K.A. Schoenecker, and S.R.B. King. 2020b. Systematic review of equids and telemetry collars implications for deployment and reporting. Wildlife Research 47:361-371.
- Holcomb, K.E. 2017. Is shade for horses a comfort resource or a minimum requirement? Journal of Animal Science 95:4206-4212.
- Holcomb, K.E., and C.S. Stull. 2016. Effect of time and weather on preference, frequency, and duration of shade use by horses. Journal of Animal Science 94:1653-1661.

Holyoak, G.R., C.C. Lyman, S. Wang, S.S. Germaine, C.O. Anderson, J.M. Baldrighi, N. Vemula, G.B. Rexabek, and A.J. Kane. In press. Efficacy of a Y-design intrauterine device as a horse contraceptive. Journal of Wildlife Management.

- Joonè, C.J., C.M. Gradil, J.A. Picard, J.D. Taylor, D. deTonnaire, and J. Cavalieri. 2021. The contraceptive efficacy of a self-assembling intra-uterine device in domestic mares. Australian Veterinary Journal. doi: 10.1111/avj.13055
- Kaweck, M.M., J.P. Severson, and K.L. Launchbaugh. 2018. Impacts of wild horses, cattle, and wildlife on riparian areas in Idaho. Rangelands 40:45-52.
- Killian, G. J., D. Thain, N. K. Diehl, J. Rhyan, and L. Miller. 2008. Four-year contraception rates of mares treated with single-injections porcine zona pellucida and GnRH vaccines and intrauterine devices. Wildlife Research 35:103–115.
- King, S.R.B., K.A. Schoenecker, and D.J. Manier. 2019. Potential spread of cheatgrass (*Bromus tectorum*) and other invasive species by feral horses (*Equus ferus caballus*) in western Colorado. Rangeland Ecology and Management 72:706-710.
- King, S.R.B., K.A. Schoenecker, J.A. Fike, and S.J. Oyler-McCance. 2018. Long-term persistence of horse fecal DNA in the environment makes equids particularly good candidates for noninvasive sampling. Ecology and Evolution 8:4053-4064.
- King, S.R.B., K.A. Schoenecker. 2019. Comparison of methods to examine diet of feral horses from noninvasively collected fecal samples. Rangeland Ecology and Management 72:661-666.
- Lubow, B.C. and J.I. Ransom. 2009. Validating Aerial Photographic Mark–Recapture for Naturally Marked Feral Horses. Journal of Wildlife Management 73:1420-1429.
- Lubow, B.C. and J.I. Ransom. 2016. Practical bias correction in aerial surveys of large mammals: validation of hybrid double-observer with sightability method against known abundance of feral horse (Equus caballus) populations. PLoS One. 2016; 11(5): e0154902.
- Lundgren, E.J., D. Ramp, J.C. Stromberg, J. Wu, N.C. Nieto, M. Sluk, K.T. Moeller, and A.D. Wallach. 2021. Equids engineer desert water availability. Science 372:491-495.
- Muñoz, D.A., P.S. Coates, and M.A. Ricca. 2020. Free-roaming horses disrupt greater sage-grouse lekking activity in the great basin. Journal of Arid Environments 184: 104304.
- Ransom, J.I. 2012. Detection probability in aerial surveys of feral horses. Journal of Wildlife Management 76:299-307.
- Ransom, J.I. and B.S. Cade. 2009. Quantifying equid behavior— A research ethogram for free-roaming feral horses. U.S. Geological Survey Techniques and Methods 2-A9.

- Ransom, J.I., B.S. Cade, and N.T. Hobbs. 2010. Influences of immunocontraception on time budgets, social behavior, and body condition in feral horses. Applied Animal Behaviour Science 124:51-60.
- Ransom, J.I., J.E. Roelle, B.S. Cade, L. Coates-Markle, and A.J. Kane. 2011. Foaling rates in feral horses treated with the immunocontraceptive porcine zona pellucida. Wildlife Society Bulletin, 35:343-352.
- Ransom, J.I., J.G. Powers, N.T. Hobbs, and D.L. Baker. 2014a. Ecological feedbacks can reduce population-level efficacy of wildlife fertility control. Journal of Applied Ecology 51:259-269.
- Ransom, J.I., J.G. Powers, H.M. Garbe, M.W. Oehler, T.M. Nett, and D.L. Baker. 2014b. Behavior of feral horses in response to culling and GnRH immunocontraception. Applied Animal Behaviour Science 157: 81-92.
- Ransom, J.I., L Lagos, H. Hrabar, H. Mowrazi, D. Ushkhjargal, and N. Spasskaya.
 2016. Wild and feral equid population dynamics. Pages 68-86 in J. I. Ransom and P Kaczensky, eds., Wild equids; ecology, management and conservation. Johns Hopkins University Press, Baltimore, Maryland.
- Ransom, J.I., N.T. Hobbs, and J. Bruemmer. 2013. Contraception can lead to trophic asynchrony between birth pulse and resources. PLoS one, 8(1), p.e54972.
- Roelle, J. 2015. Second captive breeding trial to evaluate the efficacy of SpayVac as a wild horse contraceptive. Unpublished USGS Fort Collins Science Center report to BLM.
- Roelle, J.E., S.S. Germaine, A.J. Kane, and B.S. Cade. 2017. Efficacy of SpayVac as a contraceptive in feral horses. Wildlife Society Bulletin 41:107-115.
- Roelle, J.E. and S.J. Oyler-McCance. 2015. Potential demographic and genetic effects of a sterilant applied to wild horse mares. US Geological Survey Openfile Report 2015-1045.
- Roelle, J.E., and J.I. Ransom. 2009. Injection-site reactions in wild horses (*Equus caballus*) receiving an immunocontraceptive vaccine: U.S. Geological Survey Scientific Investigations Report 2009–5038.
- Roelle, J.E., F.J. Singer, L.C. Zeigenfuss, J.I. Ransom, L. Coates-Markle, and K.A. Schoenecker. 2010. Demography of the Pryor Mountain wild horses, 1993– 2007: U.S. Geological Survey Scientific Investigations Report 2010-5125.
- Running Horse Collin, Y. 2017. The relationship between the indigenous peoples of the Americas and the horse: deconstructing a Eurocentric myth. Ph.D. Dissertation in Indigenous Studies, University of Alaska Fairbanks.
- Rutberg, A., K. Grams, J.W. Turner, and H. Hopkins. 2017. Contraceptive efficacy of priming and boosting does of controlled-release PZP in wild horses. Wildlife Research 44:174-181.
- Scasta, J.D., J.L. Beck, and C.J. Angwin. 2016. Meta-analysis of diet composition and potential conflict of wild horses with livestock and wild ungulates on western rangelands of North America. Rangeland Ecology and Management 69:310-318.

- Scasta, J.D. 2019. Why are humans so emotional about feral horses? A spatiotemporal review of the psycho-ecological evidence with global implications. Geoforum 103:171-175.
- Scasta, J.D., M. Adams, R. Gibbs, B. Fleury. 2020. Free-ranging horse management in Australia, New Zealand and the United States: socio-ecological dimensions of a protracted environmental conflict. Rangeland Journal 2020: June 11.
- Scasta, J.D. 2020. Mortality and operational attributes relative to feral horse and burro capture techniques based on publicly available data from 2010-2019. Journal of Equine Veterinary Science 86:102893.
- Schoenecker K.A., S.R.B. King, and G.H. Collins. 2020. Evaluation of the impacts of radio-marking devices on feral horses and burros in a captive setting. Human-Wildlife Interactions 14:73-86.
- Schoenecker, K.A, P.F. Doherty, J.S. Hourt, and J.P. Romero. 2018. Testing Infrared Camera Surveys and Distance Analyses to Estimate Feral Horse Abundance in a Known Population. Wildlife Society Bulletin 42:452-459.
- Schoenecker, K.A., S.R.B. King, L.S. Ekernas, and S.J. Oyler-McCance. In Press. Estimating Population Size of Feral Horses Using Fecal DNA and Closed Capture Models. Journal of Wildlife Management.
- Schoenecker, K.A., S.R.B. King, M.K. Nordquist, D. Nandintseseg, and Q. Cao. 2016. Habitat and diet of equids. In: Wild equids: ecology, management, and conservation, J. I. Ransom and P. Kaczensky, eds. Johns Hopkins University Press. Baltimore, Maryland.
- Scully, C. M., R. L. Lee, L. Pielstick, J. Medlock, K. M. Patton, G. H. Collins, and M. A. Kutzler. 2015. Comparison of chemical and surgical vasectomy on testicular activity in free-roaming horses (Equus caballus). Journal of Zoo and Wildlife Medicine 46:815–824.
- Street, P. Greater Sage-grouse habitat and demographic response to grazing by nonnative ungulates. 2021. Ph.D. Dissertation. University of Nevada Reno.
- Turner, J.W., I.K. Liu, D.R. Flanagan, A.T. Rutberg, and J.F. Kirkpatrick. 2007. Immunocontraception in wild horses: one inoculation provides two years of infertility. Journal of Wildlife Management 71:662-667.
- Turner, J.W., A.T. Rutberg, R.E. Naugle, M.A. Kaur, D.R. Flanagan. H.J. Bertschinger, and I.K.M. Liu. 2008. Controlled-release components of PZP contraceptive vaccine extend duration of infertility. Wildlife Research 35:555-562.
- Turner, J.W. 2017. Development of a controlled-release 3-4 year PZP contraceptive vaccine for wild horses. Final report for BLM assistance agreement L10AC20431. University of Toledo, Toledo, Ohio.
- Wallace, Z.P., D.W. Stahlecker, M. Ruehmann, R. Nielson, and G.T. DiDonato. 2017. Survey of Free-Ranging Horses (Equus caballus) on the Navajo Nation Final Report. Eagle Environmental, Inc., Santa Fe, New Mexico.
- Wallace, Z.P., R.M. Nielson, D.W. Stahlecker, G.T. DiDonato, and M.B Ruehmann.
 2020. An abundance estimate of free-roaming horses on the Navajo Nation.
 Rangeland Ecology and Management. doi.org/10.1016/j.rama.2020.10.003
 WHB Research Materials for Advisory Board_June 2021_28

Ziegenfuss, L.C., K.A. Schoenecker, J.I. Ransom, D.A. Ignizio, and T. Mask. 2014. Influence of nonnative and native ungulate biomass and seasonal precipitation on vegetation production in a great basin ecosystem. Western North American Naturalist 74:286-298.